
How to use Free CAD for Generative Design and AI Automation?

Introduction to FreeCAD’s Interface
FreeCAD's interface is composed of several key areas:

1. Menu Bar: Contains various tools and options.
2. Workbench Selector: Allows switching between different sets of tools, like Part Design,

Sketcher, and more.
3. 3D View: The main area where you interact with your models.
4. Combo View: Includes the Model and Tasks panels for managing your objects and settings.
5. Python Console: Where you can write and execute Python scripts to automate tasks.

Python Integration: Using Python scripting in tools like FreeCAD, simple designs like modular
components can be iteratively adjusted for specific parameters. Automates the creation of multiple
3D boxes in FreeCAD by defining a function and using a loop.

Breakdown:

1. Imports: The script imports the necessary FreeCAD modules (FreeCAD and Part).
2. Document Creation: App.newDocument() creates a new FreeCAD document to work in.
3. Function Definition: The create_box function defines a box with specified dimensions (length,

width, height) and translates it to a given position (x, y, z).
4. Loop to Create Boxes: The for loop runs five times, each time calling create_box to create a

box with the same dimensions (10x10x10) but positioned at increasing intervals along the x-
axis (15 units apart).

5. Recompute: doc.recompute() updates the document to reflect the changes made by the
script.

import FreeCAD as App
import Part

Create a new document
doc = App.newDocument()

Function to create a box
def create_box(length, width, height, x, y, z):
 box = Part.makeBox(length, width, height)
 box.translate(App.Vector(x, y, z))
 Part.show(box)

Create multiple boxes with different parameters
for i in range(5):
 create_box(10, 10, 10, i * 15, 0, 0)

doc.recompute()

Integration with AI Models: Uses a simple neural network to predict an optimized value based on
input dimensions, demonstrating how AI can be used to enhance design optimization. TensorFlow
can simulate data-driven optimization for CAD dimensions.

Breakdown:

1. Imports: The script imports TensorFlow (tensorflow) and NumPy (numpy), which are used for
machine learning and numerical operations, respectively.

2. Model Definition: A simple neural network model is defined using TensorFlow's Keras API.
The model has:

o An input layer with 3 nodes (corresponding to the 3 input features: length, width,
height).

o A hidden layer with 10 nodes using the ReLU activation function.
o An output layer with 1 node (producing the optimized value).

3. Training Data: X_train represents the input dimensions (length, width, height), and y_train
represents the corresponding optimized values (in arbitrary units).

4. Model Training: The model is compiled with the Adam optimizer and mean squared error
(MSE) loss function. It is then trained on the dummy data for 10 epochs.

5. Prediction: The trained model predicts the optimized value for a new set of input dimensions
(15, 15, 15).

6. Output: The optimized value is printed out.

import tensorflow as tf
import numpy as np

Define a simple neural network for optimization
model = tf.keras.Sequential([
 tf.keras.layers.Dense(10, activation='relu', input_shape=(3,)),
 tf.keras.layers.Dense(1)
])

Dummy training data
X_train = np.array([[10, 10, 10], [20, 20, 20], [30, 30, 30]])
y_train = np.array([8, 18, 25])

Train the model
model.compile(optimizer='adam', loss='mse')
model.fit(X_train, y_train, epochs=10)

Predict optimized value
new_dimensions = np.array([[15, 15, 15]])
optimized_value = model.predict(new_dimensions)

print("Optimized Value:", optimized_value)

